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Abstract. Many data mining algorithms require as a pre-processing step the discretization of real-valued data.   

In this paper we review some discretization methods based on clustering. We describe in detail the algorithms of 

discretization of a continuos real-valued attribute using the hierarchical graph clustering methods.   
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1. INTRODUCTION 

 

For a given data mining problem one might want to use different data mining techniques and do a cross-

validation to find the “best” data mining solution. Since many data mining techniques often require that the 

attributes of the data sets are discrete and, one would like to try, probably, all the techniques that apply to the 

problem, it is very important to have algorithms for discretization of continuous data attributes.  Also, given that 

most of the experimental data are continuous,  not discrete,  the discretization of the continuous attributes is         

indeed an important issue.   

There is a large variety of discretization methods.  Dougherty et al. (1995) [4] present a systematic survey of 

all the discretization method developed by that time. They also make a first classification  of discretization 

methods based on three directions: global vs. local, supervised vs. unsupervised, static vs. dynamic. 

In [4] five discretization methods  were compared: two unsupervised global methods (equal width and equal 

frequency interval),  two supervised global methods (1RD (Holte 1993) and Fayyad & Irani’s (1993) entropy 

minimisation) ), and a supervised local method (the classification algorithm C4.5).   

This paper is organized as follows. In the next section we present the definition of discretization of a 

continuous attribute. In Section 3 we present the clustering concept, the classification of clustering methods as 

they appear in the speciality literature and some important clusterization methods: k-means, least squares Fisher 

and hierarchical methods. In Section 4 we describe the algorithms of discretization of a real-valued attribute 

using the hierarchical graph clustering methods.  The paper also contains a conclusion section. 

 

2. DISCRETIZATION 
  

 A discrete data attribute can be seen as a function whose range is a finite set, while a continuous data 

attribute as a function whose range is an infinite totally ordered set, usually an interval. To discretize a 

continuous data attribute means to find a partition of the range of that attribute into a finite number of intervals 

[3].  

Usually, the discretization process consists of two steps[3]. First, the number of discrete intervals needs to be 

chosen. Even though there are discretization methods  which determine this number in the discretization 

process, this step is done usually by the user either by some heuristic techniques or by running the discretization 

technique for different number of intervals and deciding what is the best choice by using a criterion.    Second, 

the cut points must be determined, which is often done by a discretization algorithm itself. 

Let give a formal definition of discretization [2]. Let A be an attribute of a finite data set D. Let n be the 

number of  examples in D. We denote by adom (A) the set of all values of the attribute A in the data set D, called 

the active domain of A and by ),...,,( 21 naaaa   the vector of all values of the attribute A for all n examples. 

To discretize the numeric attribute A means  to find a partition of adom(A). This implies to determine the cut 

points kttt ,...,, 10 with kttt  ...10  such that the set },...,,{ 21 kPPP forms a partition of adom(A), where iP  is 

defined by }:)({ 1 iii tatAadomaP    for 1,0  ki  and }:)({ 1 kkk tatAadomaP   and 

)(min0 Aadomt  and  )(max Aadomtk  .  

After the discretization is perfomed, the attribute A is replaced by the discretized attribute 
discA whose 

values are defined as follows:  

),...,,(
21 n

discdiscdiscdisc aaaA  , ijj
disc Paia  iff for nj ,1  .  

Therefore each value of the attribute A which falls in iP  is replaced by i. 
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3. CLUSTERING METHODS 

 

Clustering is an important step in the process of data mining. Roughly speaking, clustering means grouping 

data in clusters, in groups which contain similar data. In other words, given a set of data examples (points) and a 

similarity measure (distance), the purpose of clustering is to search for similar points and group them into 

clusters such that the distance between examples within cluster is as small as possible and the distance between 

clusters is as large as possible. Due to the large databases that are used in the data mining process, the grouping 

of data that behave similarly in the same group and therefore dividing the databases in smaller groups is 

computational eficient. 

 In [8] is presented the following classification of the clustering problems: hard clustering and fuzzy 

clustering. In hard clustering, a data point belongs to one and only one cluster, while in fuzzy clustering, a data 

point may belong to two or more clusters with some probabilities. In this paper we will illustrate only the hard 

clustering methods. These also can be divides into two categories: hierarchical algorithms which create a 

sequence of nested clusters until the desired number of clusters is found and partitional algorithms that create an 

one-level partition of the data examples. 

The problem of choosing the right number of clusters is very important for all the clustering methods. In 

practice, usually one runs the clustering algorithm for several different number of clusters and finds the “best” 

number based on some measure of  “goodness” of clustering.  

Next we will illustrate few clustering methods. 

 

3.1. K-means clustering method 

 

The k-means clustering method remains one of the most popular clustering method. This algorithm has been 

identified by the IEEE International Conference on Data Mining (ICDM) in December 2006 as a top 10 

algorithm, being considered among the most influential data mining algorithms in the research community[15]. 

The algorithm has been discovered by several researchers across different disciplines, among which, most 

notably mentioned in the above survey paper, Lloyd (1957, 1982) , Forgy (1965) [6], Friedman and Rubin 

(1967), and MacQueen (1967) [13]. 

Given k the desired number of clusters, the algorithm has two steps: the initialization step, in which k 

examples are chosen randomly as the initial centers of the k clusters and the data points are assigned each to the 

closest cluster, and the iteration step, in which the centers of the clusters are computed as the average points of 

all the data points in the cluster and the other data points are reassigned each to the closest cluster until the 

number of reassingments is less than a small constant. The algorithm is designed such that the objective sum of 

squares function over the partition of the data points into the clusters 1, 2, …, k : 

2

1

),( 
 



k

i iclusterx

iCxdSSD  

gets minimized where Ci is the center of the cluster i, and d is the distance measure. 

 

3.2. Least-squares Fisher method 

 

The goal of the least-squares Fisher method described in the one-dimensional case, is the minimization of 

the same objective sum of squares function SSD. A partition of the data points that minimizes SSD is called the 

least-squares partition. To find this partition, Fisher proves that it has to be a contigous partition [7] i.e.   if  x, y, 

z are three data points ordered such that zyx  and x and z are in the same cluster, let say i, then y is also in 

the same cluster i. The method is based on the following lemma[7]: 

Fisher’s Suboptimization Lemma: If A1:A2 denotes a partition of a set A into two disjoint subsets A1 and 

A2, if P1
* 

denotes a least squares partition of A1 into G1 subsets and if P2
* 

denotes a least squares partition of A2 

into G2 subsets; then, of the class of subpartitions of A1:A2 employing G1 subsets over A1 and G2 subsets over A2 

a least subpartition is P1
*:

 P2
*
. 

 

3.3. Hierarchical methods 

 

Hierarchical methods can be divided into two groups: agglomerative and divisive. In the agglomerative case  

the clustering starts with every data point in one cluster and at each stage the „best” two clusters to be grouped 

together are determined until the desired number of clusters is found. In the divisive case, the clustering starts 

with all data points in one big cluster and at each stage the „best” cluster to be divided into smaller clusters is 

chosen and the process continues until the desired number of clusters is determined. Hierarchical clustering 
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methods are reprezented usually by a diagram called the dendogram which shows how the clusters are modified 

over the clustering process. 

 Dendogram example: 

  

 
 

For agglomerative methods, the „best” two clusters to be grouped together are chosen such that the distance  

between them is as small as possible, i.e. we choose R and S the best clusters such that  

),(min),(
,

srDSRD
clusterssr


 

The reason there are few agglomerative methods, not just one, is because the distance between clusters can be 

calculated differently. Some of the most used hierarchical methods are the graph methods: the single, complete, 

average, weighted average linkage methods and the geometric methods: the centroid method, the Ward’s 

method, and the median method. The distance between clusters in the case of graph methods is computed 

according to the formulas: 

 
1. The Single-link Method: 

),(min),(
,

yxdsrD
syrx 

  

 

2. The Complete-link Method:  

),(max),(
,

yxdsrD
syrx 

  

 

3. The Group Average Method: 

),(
||||

1
),(

,

yxd
sr

srD

syrx 

 unde | r | = number of data points in the cluster r 

 

           For divisive methods, the „best” cluster to be divided is the one that contains the farthest two data points. 

Therefore if we define the diameter of a cluster r: ),(max)(
,

yxdrdiam
ryx 

  and we denote the two farthest points 

min r and max r, then we choose R to be the cluster that will be divided to be such that 

)(max)( rdiamRdiam
clusterr

 . The division of the best cluster R into two clusters R1 and R2 is made in the following 

way:  )max,()min,(|1 RxdRxdRxR   and  )max,()min,(|2 RxdRxdRxR  . 

 

 

4. DISCRETIZATION BASED ON CLUSTERING 

 

In [1], Anderberg suggests three clustering methods to be used for discretization: one-dimensional 

hierarchical linkage methods, Ward’s hierarchical method and the least squares Fisher method. In [8] the 

discretization using  the k-means algorithm, and least squares method are presented in detail.   

 In [11] we present an unsupervised static discretization method based on the k-means clustering method, 

different from the classic one by the fact that the values of the attribute need no sorting before the discretization.   

We propose a technique of choosing the initial centers of the clusters designed specifically for the  clustering of 

a one–dimensional vector of real valued data, to be used in the process of discretization of a single attribute, 

which avoids the O(n log n) time requirement for sorting the data points.  

 Metode aglomerative  Agglomerative clustering   Divisive clustering 
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In this paper we describe the discretization based on hierarchical clustering. With the above notations, 

),...,,( 21 naaaa   being the vector of all values of the attribute A for all n examples, let },...,,{ 21 nxxxX  be 

the set of all examples ordered using a sorting algorithm (Quicksort, for example), therefore nxxx  ...21 . 

Since the goal is also the minimization of the objective sum of squares function SSD, accordingly to the Fisher 

Lemma[7], we can assume that the partition of X in clusters has to be a contigous partition i.e.   if  x, y, z are 

three data points ordered such that zyx  and x and z are in the same cluster, let say i, then y is also in the 

same cluster i.  Therefore our purpose is to determine the cut points kttt ,...,, 10 with kttt  ...10  such that the 

set },...,,{ 21 kPPP forms a partition of adom(A)=[x1 ,xn] where iP  is defined by }:)({ 1 iii tatAadomaP    

for 1,0  ki  and }:)({ 1 kkk tatAadomaP   and 10 xt  and  nk xt  .  

        Let ),( d  be the distance function between two data points and  ),( D be the distance between two 

clusters and let k be the desired number of clusters.We will describe the algoritms of discretization based on the 

two types of hierarchical clustering. 

 

Input: Vector of real valued data ),...,,( 21 nxxxx  with nxxx  ...21 and the number of clusters to be 

determined k.  

Goal: Our goal is to find a partition of the data in k distinct clusters.  

Output: The set of cut points kttt ,...,, 10 with kttt  ...10 that defines the discretization of the [x1 , xn]. 

 

4.1. The discretization method based on the agglomerative clustering can be described in the following  

way: 

 

The Agglomerative Algorithm:  

 

m = n // m = current number of clusters 

  for i = 1 to n do 

       Ci = {xi} 

                    min Ci = max Ci = xi 

                endfor 

                while  m > k 

Determine j such that ),(min),( 1

1

1
1 




  ii

n

i
jj CCDCCD .  

  // Group together the clusters Cj and Cj+1:  

   1 jjj CCC , .maxmax 1 jj CC  

                // Renumber the clusters: 

  for i = j + 1 to k – 1 do 

   Ci = Ci+1, min Ci = min Ci+1 , max Ci = max Ci+1 

                             endfor 

                             m = m - 1 

endwhile 

// Determination of the cut points 

10 xt    

 for i = 1 to k-1 do 

2
1

minmax



 i

C
i

C

i
t   

endfor 

nk xt   

 

The distance between clusters will be computed depending on the clustering method:  

 

1. The Single-link Method: )min,(max),( 11   iiii CCdCCD  

2. The Complete-link Method: )max,(min),( 11   iiii CCdCCD  

3. The Group Average Method: ),(
||||

1
),(

,

yxd
sr

srD

syrx 
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4.2 The discretization method based on the divisive clustering can be described in the following way: 

 

The Divisive Algorithm:  

 

},...,,{ 211 nxxxC 
 

m = 1 // m = current number of clusters  

while m < k 

 Determine Cj such that  )(max)(
,1

i
mi

j CdiamCdiam


 .  

              // Renumber the clusters:  

              for i = m downto j+2 do 

                    Ci = Ci-1, min Ci = min Ci-1 , max Ci = max Ci-1 

              endfor 

// Divide the cluster Cj into two clusters:  

 )max,()min,(|1 jjj CxdCxdCxR    

  )max,()min,(|2 jjj CxdCxdCxR  . 

                   Cj = R1, Cj+1 = R2 

 m = m + 1 

endwhile 

// Determination of the cut points 

10 xt    

 for i = 1 to k-1 do 

2
1

minmax



 i

C
i

C

i
t   

endfor 

nk xt 
 

 

5. CONCLUSION 

 

 We presented the discretization techniques based on the hierarchical clustering algorithms.The sorting 

of the data is required before the application of the clustering.  Future work may include testing the technique 

against other discretization methods of the same type and of different type.   
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